首页> 外文OA文献 >Towards a Standard Sampling Methodology on Online Social Networks: Collecting Global Trends on Twitter
【2h】

Towards a Standard Sampling Methodology on Online Social Networks: Collecting Global Trends on Twitter

机译:迈向在线社交网络的标准抽样方法:   在Twitter上收集全球趋势

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most significant current challenges in large-scale online socialnetworks, is to establish a concise and coherent method able to collect andsummarize data. Sampling the content of an Online Social Network (OSN) plays animportant role as a knowledge discovery tool. It is becoming increasingly difficult to ignore the fact that currentsampling methods must cope with a lack of a full sampling frame i.e., there isan imposed condition determined by a limited data access. In addition, anotherkey aspect to take into account is the huge amount of data generated by usersof social networking services. This type of conditions make especiallydifficult to develop sampling methods to collect truly reliable data.Therefore, we propose a low computational cost method for sampling emergingglobal trends on social networking services such as Twitter. The main purpose of this study, is to develop a methodology able to carry outan efficient collecting process via three random generators: Brownian, Illusionand Reservoir. These random generators will be combined with aMetropolis-Hastings Random Walk (MHRW) in order to improve the samplingprocess. We demonstrate the effectiveness of our approach by correctlyproviding a descriptive statistics of the collected data. In addition, we alsosketch the collecting procedure on real-time carried out on Twitter. Finally,we conclude with a trend concentration graphical description and a formalconvergence analysis to evaluate whether the sample of draws has attained anequilibrium state to get a rough estimate of the sample quality.
机译:在大型在线社交网络中,当前最重大的挑战之一是建立一种能够收集和汇总数据的简洁一致的方法。作为知识发现工具,对在线社交网络(OSN)的内容采样起着重要作用。越来越难以忽视这样一种事实,即当前的采样方法必须应付缺乏完整的采样帧的事实,即存在由有限的数据访问确定的强加条件。另外,要考虑的另一个关键方面是社交网络服务的用户生成的大量数据。这种情况使得开发真正可靠的数据采样方法特别困难。因此,我们提出了一种计算成本低的方法,用于对Twitter等社交网络服务上的新兴全球趋势进行采样。这项研究的主要目的是开发一种方法,该方法能够通过以下三个随机生成器进行有效的收集过程:布朗生成器,幻觉生成器和水库。这些随机发生器将与Metropolis-Hastings随机游走(MHRW)结合使用,以改善采样过程。通过正确提供所收集数据的描述性统计数据,我们证明了该方法的有效性。此外,我们还概述了在Twitter上实时执行的收集程序。最后,我们以趋势集中图形描述和形式收敛分析作为结束,以评估抽奖样本是否已达到平衡状态,以粗略估计样本质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号